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Abstract 
 
Microarray technology provides an opportunity for 
scientists to analyze thousands of gene expression profiles 
simultaneously. Time-series microarray data are gene 
expression values generated from microarray experiments 
within certain time intervals. Scientists can infer gene 
regulations in a biological system by judging whether two 
genes present similar gene expression values in microarray 
time-series data. Recently, a great many methods are widely 
applied on microarray time-series data to find out the 
similarity and the correlation degree among genes. Existing 
approaches including traditional Pearson coefficient 
correlation, Bayesian networks, clustering analysis, 
classification methods, and correlation analysis have 
individual disadvantages such as high computational 
complexity or they may be unsuitable for some microarray 
data. Traditional Pearson correlation coefficient is a 
numeric measuring method which gives novel effectiveness 
on two sets of numeric data. However, it is not suitable to be 
applied on microarray time-series data because of the 
existence of outliers among gene expression values. This 
paper presents a novel method of applying Pearson 
correlation coefficient along with an outlier filtering 
procedure on the widely-used microarray time-series 
datasets. Results show that the proposed method produces a 
better outcome compared with traditional Pearson 
correlation coefficient on the same dataset. Results show 
that the proposed method not only can find out certain more 
known regulatory gene pairs, but also keeps rational 
computational time. 
 
Keywords: Microarray, Time-Series Data, Gene Expression 
Analysis, Gene Regulation Identification, Outlier Filtering. 
 
1. Introduction 
 

Recently, microarray technology has become one of 
the important tools in biological researches. It makes it 
possible to monitor mRNA levels of thousands of gene 
expressions in a single experiment [1]. Due to this high 

throughput biological technology, numerous gene 
expression data are generated simultaneously. In the 
meanwhile, the large amounts of data provide us great 
challenges of analysis. Particularly, one of the major 
researches aims to take advantage of these data to find out 
the relationship between genes that gives a hint to infer how 
these genes interact with each other in a biological process. 

Microarray time-series data [2, 3] are produced by 
using cDNA microarray technology to measure thousands of 
gene expression values that reflect the reaction of each gene 
after the hybridization effect across time. Each gene 
expression value denotes the sensitive reaction result of the 
corresponding gene. These quantitative values come in the 
format of logarithm which represents distinct intensity of 
expressions. This kind of data provides a possible means for 
the inference of transcriptional regulatory relationships 
among the genes on the microarray gene chip. The 
discovery of specific gene pairs with highly-correlated 
relations could provide valuable information for biologists 
to predict important biological reactions. 

Microarray time-series data are matrix-liked 
collections of gene expression values across a certain of 
time as Table 1 shown in next page. Each row in the 
microarray time-series data stands for a gene ORF profile, 
and each column represents the specific time point. 
Different kinds of microarray time-series data may come in 
different time slots due to distinct gene sampling time and 
frequency. Gene expression values in the microarray time-
series data may be positive or negative numbers. The task is 
to analyze these gene expression values in different time 
slots and find the correlations between genes for the 
inferring of gene-gene interactions. The commonest way of 
the analysis on this kind of data is to measure pairwise 
correlation of each pair of any two genes. 

In the gene cell cycle or in a biological process, the 
expression level of one gene is usually regulated by other 
genes. There might be one-to-one or many-to-one regulatory 
relations. If one gene regulates other genes, it is called an 
input gene. On the contrary, if one gene is a regulated target, 
it is called an output gene [4]. For transcriptional regulations 
among all genes, there are two sorts of situations, activation 
and inhibition. In activation regulations, the expression of 
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the output gene is increased with the presence of the input 
gene, and vice versa. In other words, an activator gene 
regulates the activatee gene in the biological process so that 
the gene expression level of the two genes forms the trend 
of positive correlations. On the contrary, a trend of negative 
correlations results from the inhibition regulations. 

Table 1. Microarray Time-series Data 

Gene Time Slot 1 Time Slot 2 … Time Slot n 

Gene #1 0.56 0.80 0.90 

Gene #2 -0.24 -0.1 0.60 

Gene #3 0.12 0.24 0.50 

… … … … 

Gene #n 0.78 -0.14 -0.56 
 

As a result, the aim of the analysis on microarray 
time-series data is to observe and find out whether there 
exists any pair of genes that have highly-correlated relations. 
Researches on this issue have been worked for these years, 
and a variety of approaches are proposed. Common 
proposed solutions include clustering analysis [5, 6, 7, 8], 
spectral analysis [9, 10], similarity analysis [11, 12], and 
Bayesian networks [13, 14]. These approaches are widely 
applied on the inference and prediction of gene-gene 
relations in microarray time-series data. Although some of 
these proposed approaches may have a success for the 
analysis of the microarray time-series data, they may not 
work for particular datasets or even need an exhausted 
computational time. Pearson correlation coefficient is a 
commonly-used statistical and mathematical method to 
measure the correlation for the two sets of data. It has been 
successfully applied in many fields but it is not suitable for 
the analysis of microarray time-series data due to some 
limitations such as the existence of outliers. Moreover, local 
similarity plays an important role rather than the 
consideration for the whole gene expression levels in 
microarray time-series data. This brings the disadvantage for 
the application of traditional Pearson correlation coefficient. 

The paper presents a method based on Pearson 
correlation coefficient to measure the gene-gene correlation 
relations by filtering gene expression values at particular 
time slots in microarray time-series data. With the proposed 
method, significant outliers of raw data are removed so that 
more known gene regulations can be identified. 
Implementation of this method on the commonly-used 
dataset is performed, and the results show that the proposed 
method can search out more known gene regulations 
compared with original Pearson correlation coefficient. 
Additionally, the proposed method is very simple and it 
does not require too much computational time.  

Remaining of this paper is organized as follows. In 
Section 2, we give a brief description about the involved 

microarray time-series dataset. Our proposed method is 
shown in details in Section 3. Analysis and discussions for 
the experimental results are presented in Section 4. The 
concluding remarks are made in Section 5 with future work. 
 
2. Datasets 
 

This section draws the description of the dataset 
involved in our evaluations. Spellman et al. and Cho et al. 
provided the yeast microarray dataset (http://genome-
www.stanford.edu/cellcycle) [3, 7]. The data was obtained 
for genes of Yeast Saccharomyces cerevisiae cells that were 
collected with four synchronization methods: alpha-factor, 
cdc15, cdc28, and elutriation [15]. These four subsets of the 
dataset contain totally 6178 gene ORF profiles with their 
expression values across individual amounts of time slots. 
For example, the alpha subset contains 18 time points with 
seven minutes as the time interval, while the cdc28 contains 
17 time points with ten minutes as the time interval. These 
four kinds of subsets record the gene expression reactions 
during different phases in cell cycle. However, some of the 
6178 gene ORF profiles are incomplete with missing values 
at certain time slots. The Spellman’s dataset is as shown in 
Figure 1. 

 

 
 

Figure 1. Spellman’s Yeast Dataset 
 

Filkov et al. reviewed related literatures and collected 
all known gene regulations of alpha and cdc28 subsets in 
Spellman’s yeast cell dataset [16]. A database for recording 
all these known gene regulations was also constructed. In 
our evaluation, the known gene regulations recorded in 
Filkov’s database are taken as the validation datasets. In the 
database, number of recorded gene activations and 
inhibitions for alpha subset is 343 and 96 respectively, while 
for cdc28 subset is 469 and 155. All these regulations come 
in the format of A (+) B which denotes gene A is an 
activator that activates gene B. Similarly, C (-) D represents 
an inhibitor gene C inhibits gene D. For example, ABF1 (+) 
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ACS1 is an activation regulation with gene ABF1 as the 
activator. However, among these regulations recorded in the 
database, there might be a widespread situation that one 
gene could be the activator or inhibitor for more than one 
genes. For instance, gene ABF1 stands for the activator for 
totally eight different genes in cdc28 subset. Therefore, the 
pre-processing of the raw data is necessary. Firstly, we parse 
all regulations of alpha and cdc28 subsets in Filkov’s 
database and retrieve unrepeatable involved genes. The 
result of the parsing by our program is shown in Table 2. 

Table 2. Parsing Result for Gene Regulations 

Dataset No. of 
Genes 

No. of 
Activations 

No. of 
Inhibitions Total 

alpha 295 343 96 439 

cdc28 357 466 155 621 

 
After the involved genes are parsed out, the next step 

is to map these hundreds of genes to the raw Spellman’s 
datasets to match the corresponding gene expression values. 
Nevertheless, gene names in Filkov’s database are denoted 
as the gene standard name, while the gene systematic names 
are used in Spellman’s dataset. As a result, a mapping 
procedure between gene standard name and systematic 
name is required.  

For this purpose, we designed another program to 
perform this operation. The reference database for this phase 
is the Saccharomyces Genome Database 
(http://www.yeastgenome.org/) [17]. The SGD database acts 
as a platform for biologists to refer and query yeast gene 
information including the gene standard name and 
systematic name. During the process of gene name mapping, 
we found that some of the gene standard name in Filkov’s 
database cannot be found in Spellman’s dataset due to the 
different naming conventions. For example, the mapping 
gene systematic name for gene with standard name STA1 
cannot be found in the SGD database. Consequently, 
regulations with gene STA1 are filtered that causes the 
decrease of gene activations in cdc28 subset from 469 to 
466. 

So far, we have purified the involved gene expression 
values and the corresponding gene standard name as the 
implementation dataset for our proposed method. For alpha 
subset, total amount of pairwise gene combinations is 
C(295,2) equals to 43365, and for cdc28 subset is C(357,2) 
equals to 63546. Eventually, some missing regulations are 
replenished and the final amount of pairwise gene 
combinations for alpha and cdc28 subsets is 43366 and 
63548. Known regulations in Filkov’s database are marked 
as the validation measurement to estimate the correctness of 
the proposed method. 

 
 

 
3. Correlation with Outlier Filtering 
 

In Filkov’s database, diagrams of curves of the 
pairwise genes in alpha and cdc28 dataset are depicted. 
According to these graphs, we can find that most of the 
pairwise genes come along with several local maximum or 
minimum values, which are so-called outliers. To filter these 
crucial outliers, our proposed method aims to refine the 
insufficiency of applying traditional Pearson correlation 
coefficient to this question and make it possible for 
measuring the gene-gene relations of the microarray time-
series data. Pearson correlation coefficient (PCC) is a 
widely-used correlation-based method to measure the 
correlation intensity of the given two close dataset. It is 
shown as the following equation (1). 
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Despite the convenience and practicality of Pearson 

correlation coefficient, there are still limitations if applied 
on the analysis of microarray time-series data. The critical 
problem is that outliers in the datasets influence the Pearson 
correlation coefficient measuring results very much. The 
gene expression values in microarray time-series data range 
a lot. Moreover, even two genes own a highly-correlated 
degree of Pearson correlation coefficient (usually > 0.7), it 
is not definitely to say that these two genes are with 
regulatory relationship. The reason is that sometimes 
measuring correlations of gene expression values under 
certain of time slots are much more important than the 
correlations of whole gene expression values. This 
phenomenon results from the intermittent gene regulation 
reactions during all time slots so that the local maximum 
correlations attract more attentions than correlations of 
whole gene expression values. 

To overcome this problem, our method first measures 
the Pearson correlation coefficient of each pair of gene 
expression values across all time slots as a controlled 
sample. Subsequently, recalculate the Pearson correlation 
coefficient with filtering time slots from the first one to the 
last one. For each time slot point, if filtering the gene 
expression value at it can increase the absolute value of the 
correlation most, the gene expression value at this time slot 
is taken as the outlier for the gene pair. This time slot point 
is then removed. This operation is performed for five times, 
and the calculating results are recorded for all pairwise gene 
combinations. That is, Pearson correlation coefficient of all 
time slot, one-outlier filtering, two-outlier filtering, three-
outlier filtering, four-outlier filtering to five-outlier filtering 
of all gene pairwise combinations are generated. Finally, we 
compare the results in six different kinds of situations with 
known gene regulations in Filkov’s database and count the 
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number of hitting regulations for each situation. The 
flowchart of the proposed method is shown in Figure 2. 
 

 
 

Figure 2. Flowchart of the Proposed Method 
 
The detail algorithm of the proposed method is described as 
follows. 
 

Algorithm for the proposed method: 
 
I. First calculate the PCC with all time slot points, we 

get PCCall 
II. For involved time slot points (originally 1, 2, 3 … N) 

in each pair of genes, remove one time slot point from 
time slot number one to number N, recalculate PCC 
for each filter phase. Suppose PCC generated are 
PCC1, PCC2, PCC3 ,…, PCCn  

III. Calculate the difference (absolute value) of (PCC1, 
PCCall), (PCC2, PCCall), (PCC3, PCCall) … (PCCn, 
PCCall), we get Difference1, Difference2, 
Difference3 ,…, DifferenceN 

IV. Choose the Maximum value Difference_i which 
increases with filtering time slot point i from 
Difference1 to DifferenceN 

V. Set time slot point i as the outlier and remove time slot 
point i from the involved time slot points 

VI. Repeat step II to step V for four times without filtered 
time slot point. Record all the correlation coefficients 
for each time 

 
4. Experimental Results and Discussion 
 

After the generation of calculating results for each 
outlier filtering, the number of known regulations on the 
results with marked symbols is gathered. The calculating 
results are shown in Figure 3.  
 

 
 

Figure 3. Output Sample 
 

As shown in Figure 3, each row represents one of the 
pairwise combinational pairs. Rows with (+) or (-) and 
number marks are known activations and inhibitions. All the 
marked combinations are referred to Filkov’s known gene 
transcriptional regulations. We then sort this data with 
Pearson correlation coefficient on all time slot points and 
Pearson correlation coefficient on time slot points without 
filtered outliers for each time. Subsequently, we select 
significant gene combinations with highly-correlated 
Pearson correlation coefficient. Here we set the threshold 
value with 0.7 because Pearson correlation coefficient is 
usually said as characteristic when its absolute value is 
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larger than 0.7. Finally, we compare these highly-correlated 
combinations with marked known gene regulations and 
count the number of matching ones. The induced results are 
shown in Table 3 in next page. 

Table 3. Number of Identified Gene Regulations with 
|PCC| >0.7 

# of outliers 
Dataset 0 1 2 3 4 5 

alpha (+) 13 18 21 19 15 5 
alpha (-) 0 1 1 1 2 0 
cdc28 (+) 28 36 36 33 22 3 
cdc28 (-) 7 11 12 13 7 0 

 
Table 3 denotes number of identified gene regulations 

by the proposed method with Pearson correlation coefficient 
threshold set to 0.7. Individual results compared with known 
gene regulations in two subsets: alpha, cdc28 with 
activations (+) and inhibitions (-) in the subset are shown in 
the table respectively. In Table 3, the four rows stand for 
four kinds of regulations in the subsets, while the six 
columns denote the number of filtered outliers. In our 
evaluation, the number of outliers to be filtered is limited to 
at most five because filtering too many time slots in original 
microarray time-series data is meaningless. According to 
Table 3, we can see that the proposed method can 
effectively identify more known gene regulations compared 
with calculating Pearson correlation coefficient on all time 
slots without outlier filtering in the microarray time-series 
dataset. 

For example, in alpha subset, performing traditional 
Pearson correlation coefficient gives the ability to identify 
13 known gene activation regulations and no known gene 
inhibition regulations if the threshold is set to 0.7. With our 
method, 18 known gene activations and one known gene 
inhibitions are found with one outlier filtering. Furthermore, 
in cdc28 subset with one or two outlier filtering, eight more 
known gene activations and five more known gene 
inhibitions are indentified compared with zero-outlier-
filtering situations. Table 4 lists the extra gene regulations 
found by our method but not appear in zero-outlier-filtering 
situations. 

In Table 4, extra known gene regulations compared 
with performing Pearson correlation coefficient on gene 
expression values at all timeslots are listed. The two rows 
stand for two kinds of subset involved, while the two 
columns list number of filtered outliers. Regulations listed 
in the table with (+) symbols are activations and those with 
(-) represent inhibitions. For example, one of the six 
regulations in the first field “HSF(+)KAR2” can be 
explained as gene HSF activates gene KAR2. Similarly, 
“TUP1(-)HXT4” tells that gene TUP1 inhibits gene HXT4. 
From the table, it is shown that six and 12 more known gene 
regulations are identified by the proposed method with one 
filtered outlier in alpha and cdc28 subsets respectively 

compared with performing Pearson correlation coefficient 
on all timeslots without filtering outliers. Obviously, the 
proposed method does a successful work for identifying 
known gene regulations among microarray time-series data. 
 
Table 4. Extra Gene Regulations Found by the Proposed 

Method 
 

# of outliers 
 
 
Dataset

One Filtered 
Outlier 

Two Filtered 
Outliers 

alpha 
subset 

HSF1(+)KAR2 
RIM11(+)IME1 
IME1(+)RIM11 
SEC11(+)KAR2 
CLN3(+)CLN2 

 
TUP1(-)HXT4 

 
 
 
 

HSF1(+)KAR2 
RIM11(+)IME1 
IME1(+)RIM11 
SEC11(+)KAR2 
CLN3(+)CLN2 
UME6(+)OPI3 

CDC19(+)RAP1 
HAP2(+)QCR8 

 
TUP1(-)HXT4 

 

cdc28 
subset 

CYC7(+)COX5A 
RCS1(+)FET3 
GCY1(+)GAL4 
PET9(+)HAP4 

LYS14(+)LYS1 
SPT16(+)CLN1 
PMA1(+)RAP1 
HAP1(+)ROX1 

 
HEM13(-)ROX1 

STE3(-)SIN3 
NGG1(-)PDR1 
MTH1(-)HXT3 

CYC7(+)COX5A 
RCS1(+)FET3 

GCY1(+)GAL4 
PET9(+)HAP4 
SPT16(+)CLN1 
PMA1(+)RAP1 
HAP1(+)ROX1 

GAL10(+)GAL4 
 

NGG1(-)PDR1 
MTH1(-)HXT3 
SSA1(-)SSN8 
UME6(-)IME1 
STE3(-)SIN3 

 
 

Some issues about the experimental results must be 
discussed here. First, we find that our method has the best 
effect if the number of outliers to be filtered is set to two in 
alpha subset and cdc28 subset. The explanation for this 
result is that there are about two crucial outlier values in 
alpha and cdc28 subsets. Results show that performing the 
proposed method with two filtered outliers can identify the 
most regulatory genes. In other words, there are 
significantly about two outliers for genes in alpha and cdc28 
dataset, and the gene regulation prediction can thus be very 
easy with the proposed method. So far, a biological meaning 
of the reason why there are approximately two outliers in 
the dataset is still being surveyed. We are also working on 
indentifying the relations between the number of outliers 
and the individual microarray time-series dataset themselves. 

Secondly, the proposed method requires not much 
computational time. For deciding which outlier to be 
removed each time in the loop, the program only calculates 
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Pearson correlation coefficient for the same times as the 
number of timeslots in the subsets. If there are N genes and 
M time slots, the total running time will be O(N2*M). 
Despite the time complexity for the proposed algorithm 
cannot be taken as linear, there are only 17 or 18 time slots 
and 6178 genes in the involved microarray time-series data. 
All operations can be performed in an expectable 
computational time. As a result, the proposed method is 
effective and not time-consuming.  
 
5. Conclusion and Future Work 
 

This paper presents a method of refining traditional 
Pearson correlation coefficient with outlier filtering. 
Experiments are performed on the alpha and cdc28 
microarray time-series datasets. Compared with traditional 
Pearson correlation coefficient, the proposed method brings 
out better results. It can also validate the assumption that 
outliers do exist in the involved microarray time series-data. 
The results show that the proposed method can not only find 
out certain more known gene regulations, but also keeps 
rational computational time. This aids the prediction of gene 
regulatory relationship in microarray time-series datasets.  

As for the future work, we will survey the number of 
outliers of distinct microarray time-series data and its 
biological meaning. Moreover, we will take the missing 
value imputation into consideration. In this paper, missing 
values are imputed with a primary trick which is not so 
robust. We will develop a better missing value imputation 
technique so that the gene regulation prediction can be more 
accurate and effective. 
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